Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 8 - Further Applications of Integration - 8.2 Area of a Surface of Revolution - 8.2 Exercises - Page 595: 11

Answer

$$ y=\cos \left(\frac{1}{2} x\right) \quad(\text { for } 0 \leq x \leq \pi) $$ The exact area of the surface obtained by rotating the given curve about the x-axis is $$ S=\int 2 \pi y d s=\int_{0}^{3} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\pi \sqrt{5}+4 \pi \ln \left(\frac{1+\sqrt{5}}{2}\right) $$

Work Step by Step

The curve $$ y=\cos \left(\frac{1}{2} x\right) \quad(\text { for } 0 \leq x \leq \pi) $$ We have $$ y^{\prime}=-\frac{1}{2} \sin \left(\frac{1}{2} x\right) $$ $\Rightarrow$ $$ \begin{aligned} ds &= \sqrt {1+\left(y^{\prime}\right)^{2}} dx \\ &=\sqrt{1+\{-\frac{1}{2} \sin \left(\frac{1}{2} x\right)\}^{2}} dx \end{aligned} $$ So, the area of the surface obtained by rotating the curve about the x-axis $$ \begin{aligned} S &=\int 2 \pi y d s\\ &=\int_{0}^{3} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x\\ &=2 \pi \int_{0}^{\pi} \cos \left(\frac{1}{2} x\right) \sqrt{1+\frac{1}{4} \sin ^{2}\left(\frac{1}{2} x\right)} d x \\ &=2 \pi \int_{0}^{1} \sqrt{1+\frac{1}{4} u^{2}}(2 d u) \quad\left[\begin{array}{c} u=\sin \left(\frac{1}{2} x\right) \\ d u=\frac{1}{2} \cos \left(\frac{1}{2} x\right) d x \end{array}\right] \\ &=2 \pi \int_{0}^{1} \sqrt{4+u^{2}} d u\\ & \quad\quad\quad\quad\quad\left[\begin{array}{c} \text{ If we look at the Table of Integrals we see that} , \\ \text{ the closest entry is number 21 with a=2 } \end{array}\right] \\ &\stackrel{21}{=} 2 \pi\left[\frac{u}{2} \sqrt{4+u^{2}}+2 \ln \left(u+\sqrt{4+u^{2}}\right)\right]_{0}^{1} \\ &=2 \pi\left[\left(\frac{1}{2} \sqrt{5}+2 \ln (1+\sqrt{5})\right)-(0+2 \ln 2)\right] \\ &=\pi \sqrt{5}+4 \pi \ln \left(\frac{1+\sqrt{5}}{2}\right) \end{aligned} $$ The exact area of the surface obtained by rotating the given curve about the x-axis is $$ S=\int 2 \pi y d s=\int_{0}^{3} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\pi \sqrt{5}+4 \pi \ln \left(\frac{1+\sqrt{5}}{2}\right) $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.