Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 8 - Further Applications of Integration - 8.2 Area of a Surface of Revolution - 8.2 Exercises - Page 595: 8

Answer

$$\frac{13\pi }{3}$$

Work Step by Step

Given $$y=\sqrt{5-x}, \ \ \ \ \ \ \ 3 \leqslant x \leqslant 5$$ Since $$\frac{dy}{dx}= \frac{1}{2 \sqrt{5-x}}$$ Then \begin{aligned} S&= 2 \pi \int_{3}^{5} y\sqrt{1+\left[\frac{dy}{d x}\right]^{2}} d x\\ &=2 \pi \int_{3}^{5} \sqrt{5-x} \sqrt{1+\left(\frac{1}{2 \sqrt{5-x}}\right)^{2}}\\ &= 2 \pi \int_{3}^{5} \sqrt{5-x} \sqrt{\left(\frac{21-4 x}{4(5-x)}\right)} d x\\ &=2 \pi \int_{3}^{5} \sqrt{5-x}\left(\frac{\sqrt{21-4 x}}{2 \sqrt{5-x}}\right) d x\\ &=\pi \int_{3}^{5} \sqrt{21-4 x} d x\\ &=\frac{-\pi}{4}\frac{2}{3}(21-4x)^{3/2}\bigg|_{3}^{5}\\ &=\frac{-\pi}{6}[1-9^{3/2}]\\ &=\frac{13\pi }{3} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.