Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 579: 76

Answer

$\frac{\pi ^3}{8}-\frac{\pi }{2}$

Work Step by Step

Given $$y= \cos^2 x,\ \ \ \ [0,\pi/2] $$ To find the volume of the solid when the bounded area rotates about y-axis \begin{aligned} V & =2\pi\int_0^{\pi / 2} xf(x) d x\\ &=2\pi \int_0^{\pi / 2}x\cos ^2 x d x \end{aligned} Integrate by parts \begin{aligned} u&= x\ \ \ \ \ \ \ \ \ & dv&= \cos^2(x)= \frac{1}{2}(1+\cos(2x))\\ du&=d x\ \ \ \ \ \ \ \ \ & v&=x+\frac{1}{2}\sin \left(2x\right) \end{aligned} Then \begin{aligned} V & =2\pi\int_0^{\pi / 2} xf(x) d x\\ &=2\pi \int_0^{\pi / 2}x\cos ^2 x d x \\ &= 2\pi \left( \frac{1}{2}x\left(x+\frac{1}{2}\sin \left(2x\right)\right)\bigg|_0^{\pi / 2}-\int _0^{\pi / 2}\frac{1}{2}\left(x+\frac{1}{2}\sin \left(2x\right)\right)dx\right)\\ &= 2\pi \left(\frac{1}{2}x\left(x+\frac{1}{2}\sin \left(2x\right)\right)-\frac{1}{2}\left(\frac{x^2}{2}-\frac{1}{4}\cos \left(2x\right)\right)\right)\bigg|_0^{\pi / 2}\\ &= 2\pi \left(\frac{\pi ^2-2}{16}-\frac{1}{8}\right)\\ &=\frac{\pi ^3}{8}-\frac{\pi }{2} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.