Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 579: 73

Answer

$2$

Work Step by Step

Given $$ y=\cos x,\ \ \ y=\cos^2 x ,\ \ \ x=0,\ \ x=\pi$$ Since \begin{aligned} \cos^2 x &= \cos x\\ \cos x(\cos x-1)&= 0 \end{aligned} Then $x=0,\ \ x=\pi/2$, since \begin{aligned} \cos x \geq \cos^2 x &\ \ \ 0\leq \ x\leq \pi/2\\ \cos^2 x \geq \cos x &\ \ \ \pi/2\leq \ x\leq \pi \end{aligned} Then \begin{aligned} A & =\int_0^{\pi / 2}\left(\cos x-\cos ^2 x\right) d x+\int_{\pi / 2}^\pi\left(\cos ^2 x-\cos x\right) d x \\ & =\left[\sin x-\frac{1}{2} x-\frac{1}{4} \sin 2 x\right]_0^{\pi / 2}+\left[\frac{1}{2} x+\frac{1}{4} \sin 2 x-\sin x\right]_{\pi / 2}^\pi\\ &=\left[\left(1-\frac{\pi}{4}\right)-0\right]+\left[\frac{\pi}{2}-\left(\frac{\pi}{4}-1\right)\right]\\ &=2 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.