Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 579: 75

Answer

$\frac{3}{16} \pi^2$

Work Step by Step

Given $$y= \cos^{2} x\ \ \ \ [0,\pi/2] $$ To find the volume of the solid when the bounded area rotates about x-axis \begin{aligned} V & =\int_0^{\pi/2} \pi[f(x)]^2 d x\\ &=\pi \int_0^{\pi/2}\left(\cos ^2 x\right)^2 d x\\ &=\pi \int_0^{\pi/2}\left[\frac{1}{2}(1+\cos 2 x)\right]^2 d x \\ & =\frac{\pi}{4} \int_0^{\pi / 2}\left(1+\cos ^2 2 x+2 \cos 2 x\right) d x\\ &=\frac{\pi}{4} \int_0^{\pi / 2}\left[1+\frac{1}{2}(1+\cos 4 x)+2 \cos 2 x\right] d x \\ & =\frac{\pi}{4}\left[\frac{3}{2} x+\frac{1}{2}\left(\frac{1}{4} \sin 4 x\right)+2\left(\frac{1}{2} \sin 2 x\right)\right]_0^{\pi / 2}\\ &=\frac{\pi}{4}\left[\left(\frac{3 \pi}{4}+\frac{1}{8} \cdot 0+0\right)-0\right]\\ &=\frac{3}{16} \pi^2 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.