Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 579: 72

Answer

$6\sqrt{2}+\frac{-\ln \left(2\sqrt{2}+3\right)+\ln \left(-2\sqrt{2}+3\right)}{2}$

Work Step by Step

Given $$y^2-x^2=1,\ \ \ \ y=3$$ First, we find the intersection points \begin{aligned} y^2-x^2&=1\\ 9-x^2&= 1\\ x^2-8&=0 \end{aligned} Then $x=\pm 2\sqrt{2}$, since $$3\geq \sqrt{1+x^2},\ \ \ \ \ -2\sqrt{2}\leq x\leq 2\sqrt{2}$$ Hence \begin{aligned} A&=\int_{-2\sqrt{2}}^{2\sqrt{2} } \left(3-\sqrt{1+x^2}\right)dx \\ &= \int \:3dx-\int \sqrt{1+x^2}dx \end{aligned} Use the rule $$\int \sqrt{a^2+u^2} d u=\frac{u}{2} \sqrt{a^2+u^2}+\frac{a^2}{2} \ln \left(u+\sqrt{a^2+u^2}\right)+C$$ we get \begin{aligned} A&=\int_{-2\sqrt{2}}^{2\sqrt{2} } \left(3-\sqrt{1+x^2}\right)dx \\ &= \int \:3dx-\int \sqrt{1+x^2}dx\\ &= \left(3x-\frac{1}{2}x\sqrt{1+x^2}-\frac{1}{2}\ln \left|x+\sqrt{1+x^2}\right|\right)\bigg|_{-2\sqrt{2}}^{2\sqrt{2} }\\ &= 6\sqrt{2}+\frac{-\ln \left(2\sqrt{2}+3\right)+\ln \left(-2\sqrt{2}+3\right)}{2} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.