Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 577: 4

Answer

$$\frac{-\pi +3\sqrt{3}}{24}$$

Work Step by Step

Given $$ \int_{0}^{\pi/6}t\sin 2t\ dt $$Let \begin{align*} u&= t\ \ \ \ \ \ \ \ \ \ \ \ \ \ dv=\sin 2t\\ u&= dt\ \ \ \ \ \ \ \ \ \ \ \ \ dv= \frac{-1}{2}\cos 2t \end{align*} Then using integration by parts \begin{align*} \int_{0}^{\pi/6}t\sin 2t\ dt &=uv-\int vdu\\ &= \frac{-1}{2}t\cos 2t\bigg|_{0}^{\pi/6} + \frac{1}{2} \int_{0}^{\pi/6} \cos 2tdt\\ &=\frac{-1}{2}t\cos 2t \bigg|_{0}^{\pi/6}+\frac{1}{4}\sin 2t \bigg|_{0}^{\pi/6}\\ &=\frac{-\pi +3\sqrt{3}}{24}-0\\ &=\frac{-\pi +3\sqrt{3}}{24} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.