Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 577: 6

Answer

$$\frac{32\ln \left(2\right)}{3}-\frac{7}{4}$$

Work Step by Step

Given $$ \int_{1}^{2}x^5\ln xdx$$ Let \begin{align*} u&=\ln x\ \ \ \ \ \ \ \ \ \ \ \ \ \ dv=x^5\\ u&=\frac{1}{x}dx\ \ \ \ \ \ \ \ \ \ \ \ \ dv= \frac{1}{6}x^6 \end{align*} Then using integration by parts \begin{align*} \int_{1}^{2}x^5\ln xdx&=uv-\int vdu\\ &= \frac{1}{6}x^6\ln x\bigg|_{1}^{2}- \frac{1}{6}\int_{1}^{2} x^5\\ &=\frac{1}{6}x^6\ln x\bigg|_{1}^{2}- \frac{1}{36}x^6\bigg|_{1}^{2}\\ &=\frac{32}{3}\ln \left(2\right)-\frac{16}{9}+ \frac{1}{36} \\ &=\frac{32\ln \left(2\right)}{3}-\frac{7}{4} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.