Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.9 The Divergence Theorem - 16.9 Exercises - Page 1186: 29

Answer

$\iint_S (f \nabla g) \cdot n dS=\iiint_E (f \nabla^2g+\nabla f \cdot \nabla g)dV$

Work Step by Step

Since, we have $D_nf=(\nabla f) \cdot n$ Divergence Theorem: $\iiint_Ediv \overrightarrow{F}dV=\iint_S \overrightarrow{F}\cdot d\overrightarrow{S} $ where, $div F=\dfrac{\partial P}{\partial x}+\dfrac{\partial Q}{\partial y}+\dfrac{\partial R}{\partial z}$ This implies that $\iint_S (f \nabla g) dS=\iiint_E div (f \nabla g) dV=\iint_E \nabla (F \nabla g) dV$ Since, $F=\nabla g$ Therefore, $\iint_S (f \nabla g) dS=\iiint_E div (f \nabla g) dV$ and $\iint_E \nabla (F \nabla g) dV=\iiint_E f(\nabla \cdot ( \nabla g) +\nabla f \cdot (\nabla g) dV$ Thus, $\iint_S (f \nabla g) \cdot n dS=\iiint_E (f \nabla^2g+\nabla f \cdot \nabla g)dV$ (Verified)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.