Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.9 The Divergence Theorem - 16.9 Exercises - Page 1186: 26

Answer

$V(E)=(\dfrac{1}{3}) \iint_S \overrightarrow{F}\cdot d\overrightarrow{S}$

Work Step by Step

Divergence Theorem: $\iiint_Ediv \overrightarrow{F}dV=\iint_S \overrightarrow{F}\cdot d\overrightarrow{S} $ where, $div F=\dfrac{\partial P}{\partial x}+\dfrac{\partial Q}{\partial y}+\dfrac{\partial R}{\partial z}$ Here, $div F=\dfrac{\partial P}{\partial x}+\dfrac{\partial Q}{\partial y}+\dfrac{\partial R}{\partial z}=\dfrac{\partial (x)}{\partial x}+\dfrac{\partial (y)}{\partial y}+\dfrac{\partial (z)}{\partial z}=1+1+1=3$ Divergence Theorem: $\iiint_Ediv \overrightarrow{F}dV=\iint_S \overrightarrow{F}\cdot d\overrightarrow{S} $ $\iint_S \overrightarrow{F}\cdot d\overrightarrow{S}=\iiint_E (3)dV $ $(\dfrac{1}{3}) \iint_S \overrightarrow{F}\cdot d\overrightarrow{S}=\iiint_E dV$ Hence, the result has been verified such that $V(E)=(\dfrac{1}{3}) \iint_S \overrightarrow{F}\cdot d\overrightarrow{S}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.