Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.9 The Divergence Theorem - 16.9 Exercises - Page 1186: 23

Answer

$div E=0$ for the electric field then $E(x) =\dfrac{\epsilon Q x}{|x^3|}$

Work Step by Step

$E(x) =\dfrac{\epsilon Q x}{|x^3|}=\dfrac{\epsilon Q (xi+yj+zk) }{(x^2+y^2+z^2)^{3/2}}= \epsilon Q F$ Here, we have $f(x,y,z)=(x^2+y^2+z^2)^{-3/2}$ Also, $\nabla f=f_xi+f_y j+f_z k$ $\nabla f=-\dfrac{3x}{(x^2+y^2+z^2)^{5/2}}i-\dfrac{3y}{(x^2+y^2+z^2)^{5/2}} j-\dfrac{3z}{(x^2+y^2+z^2)^{5/2}}k$ or, $=-3(x^2+y^2+z^2)^{-5/2}(xi+yj+zk)$ Now, $div F=-3(x^2+y^2+z^2)^{-5/2}(xi+yj+zk)(xi+yj+zk) \cdot (xi+yj+zk)+-3(x^2+y^2+z^2)^{-3/2}=0$ This implies that when $div E=0$ for the electric field then $E(x) =\dfrac{\epsilon Q x}{|x^3|}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.