Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.9 The Divergence Theorem - 16.9 Exercises - Page 1186: 15

Answer

$\dfrac{341\sqrt 2}{60}+\dfrac{81}{20} \arcsin (\dfrac{\sqrt 3}{3})$

Work Step by Step

Divergence Theorem: $\iiint_Ediv \overrightarrow{F}dV=\iint_S \overrightarrow{F}\cdot d\overrightarrow{S} $ where, $div F=\dfrac{\partial P}{\partial x}+\dfrac{\partial Q}{\partial y}+\dfrac{\partial R}{\partial z}=\dfrac{\partial e^y \tan z}{\partial x}+\dfrac{\partial y \sqrt{3-x^2}}{\partial y}+\dfrac{\partial (x \sin y)}{\partial z}=\sqrt{3-x^2}$ $\iiint_E div F dV=\iiint_E \sqrt{3-x^2} dV=\int_{-1}^{1}\int_{-1}^{1} \int_{0}^{2-x^4-y^4} \times \sqrt{3-x^2} \times dz dxdy$ $=\int_{-1}^{1}\int_{-1}^{1} (2-x^4-y^4) \times [\sqrt{3-x^2}] dxdy$ $=\int_{0}^{2 \pi}\int_0^{\pi} \int_{0}^{R} 5\rho^2 \times \sin \phi \times d \rho d\phi d \theta$ Use CAS Method. Hence, we have $\iint_S F \cdot dS=\dfrac{341\sqrt 2}{60}+\dfrac{81}{20} \arcsin (\dfrac{\sqrt 3}{3})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.