Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.7 Triple-Integrals in Cylindrical Coordinates - 15.7 Exercises - Page 1083: 9

Answer

a) $z^2=1+r\cos \theta-r^2$ b) $z=r^2\cos 2 \theta$

Work Step by Step

In the cylindrical coordinate system, we have $x=r \cos \theta \\ y=r \sin \theta \\z=z$ Conversion of rectangular to cylindrical coordinate system, we have $r^2=x^2+y^2 \\ \tan \theta=\dfrac{y}{x} \\z=z$ a) $(r\cos \theta)^2-r\cos \theta +(r\sin \theta)^2+z^2=1$ or, $r^2(\cos^2 \theta+\sin^2 \theta)-r\cos \theta +z^2=1 $ Therefore, $z^2=1+r\cos \theta-r^2$ b) In the cylindrical coordinate system, we have $x=r \cos \theta \\ y=r \sin \theta \\z=z$ Conversion of rectangular to cylindrical coordinate system, we have $r^2=x^2+y^2 \\ \tan \theta=\dfrac{y}{x} \\z=z$ $z=(r\cos \theta)^2-(r\sin \theta)^2$ or, $z=r^2(\cos^2 \theta-\sin^2 \theta)$ Therefore, $z=r^2\cos 2 \theta$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.