Answer
$384 \pi$
Work Step by Step
Here, we have $\iiint_E\sqrt{x^2+y^2} dV=\int_0^{2\pi} \int_{-5}^{4}\int_0^{4} r^2 dr dz d\theta$
$=\int_0^{2\pi} d\theta \cdot \int_{-5}^{4} dz \cdot \int_0^{4} r^2 dr$
$=[\theta]_0^{2\pi} [z]_{-5}^{4} \cdot [\dfrac{r^3}{3}]_0^{4}$
$=18 \pi[\dfrac{1}{3}(4)^3-\dfrac{1}{3}(0)^3]$
$=384 \pi$