Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.7 Triple-Integrals in Cylindrical Coordinates - 15.7 Exercises - Page 1083: 5

Answer

Circular cylinder with radius $2$ and axis the z-axis

Work Step by Step

Here, we have $r=2$ In the cylindrical coordinate system, we have $x=r \cos \theta \\ y=r \sin \theta \\z=z$ Conversion of rectangular to cylindrical coordinate system, we have $r^2=x^2+y^2 \\ \tan \theta=\dfrac{y}{x} \\z=z$ Then, we have $\sqrt{x^2+y^2}=2$ Re-arrange as: $x^2+y^2=2^2$ Hence, we have an equation of a circular cylinder with radius $2$ and axis the $z$-axis.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.