Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - Chapter Review Exercises - Page 497: 29

Answer

$$ e^{3x} = 1+\dfrac{1}{1!}(3x)+\dfrac{1}{2!}(3x)^2+\dfrac{1}{3!}(3x)^3+.....+\dfrac{3^n}{n!}x^n $$

Work Step by Step

Since \begin{align*} f(x)&=e^x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ f(0)=1\\ f'(x)&=e^x\ \ \ \ \ \ \ \ \ \ \ \ \ \ f'(0)=1\\ f''(x)&=e^x\ \ \ \ \ \ \ \ \ \ \ \ \ \ f''(0)=1\\ f'''(x)&=e^x\ \ \ \ \ \ \ \ \ \ \ \ \ \ f'''(0)=1\\ f^{(4)}(x)&=e^x\ \ \ \ \ \ \ \ \ \ \ \ \ f^{(4)}(0)= 1 \end{align*} Then \begin{align*} e^x &=f(0)+\dfrac{f'(0)}{1!}x+\dfrac{f''(0)}{2!}x^2+\dfrac{f'''(0)}{3!}x^3+.....+\dfrac{f^{(n)}(0)}{n!}x^n\\ &= 1+\dfrac{1}{1!}x+\dfrac{1}{2!}x^2+\dfrac{1}{3!}x^3+.....+\dfrac{1}{n!}x^n \end{align*} To find the Maclaurin series of $f(x)=e^{3x}$, replace $x$ by $3x$: $$ e^{3x} = 1+\dfrac{1}{1!}(3x)+\dfrac{1}{2!}(3x)^2+\dfrac{1}{3!}(3x)^3+.....+\dfrac{3^n}{n!}x^n $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.