Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - Chapter Review Exercises - Page 497: 23

Answer

$$T_3(x) =1+3(x-1)+3(x-1)^{2}+(x-1)^{3}$$

Work Step by Step

Given $$f(x)=x^{3}, \quad T_{3}, \quad a=1$$ Since \begin{align*} f(x)&=x^{3}\ \ \ \ \ \ \ &f(1)=1\\ f'(x)&=3x^{2}\ \ \ \ \ \ \ &f(1)=3\\ f''(x)&=6x\ \ \ \ \ \ \ &f(1)=6\\ f'''(x)&=6\ \ \ \ \ \ \ &f(1)=6 \end{align*} Then \begin{aligned} T_{3}(x)&= f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(1)}{3 !}(x-a)^{3} \\ &=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2 !}(x-1)^{2}+\frac{f^{\prime \prime \prime}(1)}{3 !}(x-1)^{3} \\ &=1+3(x-1)+\frac{6}{2 !}(x-1)^{2}+\frac{6}{3 !}(x-1)^{3} \\ &=1+3(x-1)+3(x-1)^{2}+(x-1)^{3} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.