Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - Chapter Review Exercises - Page 497: 24

Answer

$$T_{3}(x) =-5(x+2)+3(x+2)^{3}$$

Work Step by Step

Given $$f(x)=3(x+2)^{3}-5(x+2), \quad T_{3}, \quad a=-2$$ Since \begin{align*} f(x)&=3(x+2)^{3}-5(x+2)\ \ \ \ \ \ \ &f(-2)=0\\ f'(x)&=9(x+2)^{2}-5\ \ \ \ \ \ \ &f(-2)=-5\\ f''(x)&=18(x+2)\ \ \ \ \ \ \ &f(-2)=0\\ f'''(x)&=18\ \ \ \ \ \ \ &f(-2)=18 \end{align*} Then \begin{aligned} T_{3}(x)&= f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(1)}{3 !}(x-a)^{3} \\ &=f(-2)+f^{\prime}(-2)(x+2)+\frac{f^{\prime \prime}(-2)}{2 !}(x+2)^{2}+\frac{f^{\prime \prime \prime}(-2)}{3 !}(x+2)^{3} \\ &=-5(x+2) +\frac{18}{3 !}(x+2)^{3} \\ &=-5(x+2)+3(x+2)^{3} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.