Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - Chapter Review Exercises - Page 497: 26

Answer

$$T_{3}(x) = 2+\frac{1}{4}(x-2)-\frac{1}{32}(x-2)^{2}+\frac{5}{768}(x-2)^{3}$$

Work Step by Step

Given $$f(x)=(3 x+2)^{1 / 3}, \quad T_{3}, \quad a=2$$ Since \begin{align*} f(x)&=(3 x+2)^{1 / 3},\ \ \ \ \ \ \ &f(2)=2\\ f'(x)&=(3 x+2)^{-2 / 3},\ \ \ \ \ \ \ &f(2)=1/4\\ f^{\prime \prime}(x) &=-2(3 x+2)^{-\frac{3}{3}} \quad &f^{\prime \prime}(2)=-\frac{1}{16}\\ f^{\prime \prime \prime}(x) &=10(3 x+2)^{-\frac{8}{3}} \quad &f^{\prime \prime \prime}(2)=\frac{5}{128} \end{align*} Then \begin{aligned} T_{3}(x)&= f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}(x-a)^{3} \\ &= 2+\frac{1}{4}(x-2)-\frac{1}{32}(x-2)^{2}+\frac{5}{768}(x-2)^{3} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.