Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.1 Arc Length and Surface Area - Exercises - Page 469: 47

Answer

$$2 \pi \ln 2+\frac{15 \pi}{8}$$

Work Step by Step

Since $$\sqrt{1+y'^2}=\sqrt{ 1+ \sinh^2 x} =\cosh x$$ Then \begin{aligned} S &=2 \pi \int_{a}^{b} f(x)\sqrt{ 1+ f'^2(x)} d x\\ &=2 \pi \int_{-\ln 2}^{\ln 2} \cosh ^{2} x d x\\ &=\pi \int_{-\ln 2}^{\ln 2}(1+\cosh 2 x) d x\\ &=\left.\pi\left(x+\frac{1}{2} \sinh 2 x\right)\right|_{-\ln 2} ^{\ln 2} \\ &=\pi\left(\ln 2+\frac{1}{2} \sinh (2 \ln 2)+\ln 2-\frac{1}{2} \sinh (-2 \ln 2)\right)\\ &=2 \pi \ln 2+\pi \sinh (2 \ln 2)\\ &=2 \pi \ln 2+ \pi \frac{e^{2\ln 2}-e^{-2\ln 2} }{2}\\ &= 2 \pi \ln 2+\frac{15 \pi}{8} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.