Answer
$$s= \int_{0}^{1}\sqrt{1+4u^2}du$$
Work Step by Step
Since
$$g(x)=\sqrt{x}\to g'(x)=\frac{1}{2\sqrt{x}}$$
Then
\begin{align*}
s&=\int_{0}^{1}\sqrt{1+g'^2(x)}dx\\
&= \int_{0}^{1}\sqrt{1+\frac{1}{4x^2}}dx\\
\end{align*}
Let $u=\sqrt{x}$; then
\begin{align*}
s&=\int_{0}^{1}\sqrt{1+\frac{1}{4x^2}}dx\\
&= \int_{0}^{1}\sqrt{1+\frac{1}{4u^2}}2udu\\
&= \int_{0}^{1}\sqrt{1+4u^2}du\\
\end{align*}
The last integral represents the arc length of $f(u)=u^2$ on $[0,1]$