Answer
$\approx 203 $
Work Step by Step
Since
\begin{aligned}
S&=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left[f'(x)\right]^{2}} d x\\
&=2 \pi \int_{0}^{2} x^{3} \sqrt{1+\left[3 x^{2}\right]^{2}} d x \\
&=2 \pi \int_{0}^{2} x^{3} \sqrt{1+9 x^{4}} d x\\
&=\frac{\pi}{18}\int_{0}^{2}36 x^{3} \sqrt{1+9 x^{4}} d x\\
&= \frac{ \pi}{27}\left(1+9 x^{4}\right)^{3/2}\bigg|_{0}^{2}\\
&\approx 203
\end{aligned}