Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.1 Arc Length and Surface Area - Exercises - Page 468: 18

Answer

$$6a$$

Work Step by Step

Since \begin{aligned} y^{\prime}(x) &=\frac{d}{d x}\left[\left(a^{2 / 3}-x^{2 / 3}\right)^{3 / 2}\right] \\ &=\frac{3}{2}\left(a^{2 / 3}-x^{2 / 3}\right)^{1 / 2} \cdot\left(0-\frac{2}{3} x^{-1 / 3}\right) \\ &=\frac{-\left(a^{2 / 3}-x^{2 / 3}\right)^{1 / 2}}{x^{1 / 3}} \end{aligned} Then \begin{align*} s&=4 \int_{0}^{a} \sqrt{1+\left[\frac{-\left(a^{2 / 3}-x^{2 / 3}\right)^{1 / 2}}{x^{1 / 3}}\right]^{2}} d x\\ &==4 \int_{0}^{a} \sqrt{1+\frac{a^{2 / 3}-x^{2 / 3}}{x^{2 / 3}}} d x\\ &=4 \int_{0}^{a} \sqrt{\frac{x^{2 / 3}+a^{2 / 3}-x^{2 / 3}}{x^{2 / 3}}} d x\\ &=4 \int_{0}^{a} \sqrt{\frac{x^{2 / 3}+a^{2 / 3}-x^{2 / 3}}{x^{2 / 3}}} d x\\ &=4 \int_{0}^{a} \sqrt{\frac{a^{2 / 3}}{x^{2 / 3}}} d x\\ &=4 \int_{0}^{a} a^{1 / 3} x^{-1 / 3} d x\\ &=4 a^{1 / 3} \cdot \frac{3 a^{2 / 3}}{2 / 3}\\ &=6a \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.