Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.1 Arc Length and Surface Area - Exercises - Page 468: 15

Answer

$$2.29896$$

Work Step by Step

Since \begin{aligned} s &=\int_{a}^{b}\sqrt{1+f'^2}dx\\ &=\int_{1}^{3} \sqrt{1+\left[\frac{1}{x}\right]^{2}} d x \\ &=\int_{1}^{3} \sqrt{1+\frac{1}{x^{2}}} d x \end{aligned} Since $$ \Delta x= \frac{3-1}{6}=\frac{1}{3}$$ Then \begin{aligned} M_{6}=& \frac{1}{3}(f(7 / 6)+f(3 / 2)+f(11 / 6)+f(13 / 6)+f(5 / 2)+f(17 / 6)) \\ =& \frac{1}{3}[\sqrt{1+\frac{1}{(7 / 6)^{2}}}+\sqrt{1+\frac{1}{(3 / 2)^{2}}}+\sqrt{1+\frac{1}{(11 / 6)^{2}}}+\sqrt{1+\frac{1}{(13 / 6)^{2}}}+\sqrt{1+\frac{1}{(5 / 2)^{2}}}\\ &+\sqrt{1+\frac{1}{(17 / 6)^{2}}}] \\ & \approx 2.29896 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.