Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.1 Arc Length and Surface Area - Exercises - Page 468: 16

Answer

$$2.5065$$

Work Step by Step

Since \begin{aligned} s &=\int_{a}^{b} \sqrt{1+f'^{2}(x)} d x \\\\ &=\int_{0}^{2} \sqrt{1+[-\sin x]^{2}} d x \\ &=\int_{0}^{2} \sqrt{1+\sin ^{2} x} d x \end{aligned} Since $$ \Delta x= \frac{2-0}{8}=\frac{1}{4}$$ Then \begin{aligned} T_{8} &=\frac{1}{2} \cdot \frac{1}{4}\left[f(0)+2 \sum_{j=1}^{7} f\left(0+\frac{1}{4} \cdot j\right)+f(2)\right] \\ &=\frac{1}{8}[\sqrt{1+\sin ^{2} 0}+2(\sqrt{1+\sin ^{2} \frac{1}{4}}+\sqrt{1+\sin ^{2} 2 \cdot \frac{1}{4}}+\sqrt{1+\sin ^{2} 3 \cdot \frac{1}{4}}+\sqrt{1+\sin ^{2} 4 \cdot \frac{1}{4}}+\sqrt{1+\sin ^{2} 5 \cdot \frac{1}{4}}\\ &+\sqrt{1+\sin ^{2} 6 \cdot \frac{1}{4}}+\sqrt{1+\sin ^{2} 7 \cdot \frac{1}{4}})+\sqrt{1+\sin ^{2} 2}] \\ & \approx 2.5065 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.