Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.1 Arc Length and Surface Area - Exercises - Page 468: 11

Answer

$3.9577$

Work Step by Step

We have \begin{aligned} s=\int_{a}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}} d x &=\int_{1}^{2} \sqrt{1+\left(x^{3}\right)^{2}} d x \\ &=\int_{1}^{2} \sqrt{1+x^{6}} d x \end{aligned} Use the Trapezoidal Rule, $T_{5},$ to approximate the arc length, $ T_{5}=\frac{1}{2} \Delta x\left[y_{0}+2 y_{1}+2 y_{2}+2 y_{3}+2 y_{4}+y_{5}\right], \quad y_{j}=f\left(x_{j}\right) $ where, $ \Delta x=\frac{b-a}{N}=\frac{2-1}{5}=\frac{1}{5} $ and, $ \left[x_{j}\right]_{j=0}^{5}=\left[1, \frac{6}{5}, \frac{7}{5}, \frac{8}{5}, \frac{9}{5}, 2\right] $ Then \begin{aligned} s &=\int_{1}^{2} \sqrt{1+x^{6}} d x \\ &=\frac{1}{10}[\sqrt{2}+2 \sqrt{1+\left(\frac{6}{5}\right)^{6}}+2 \sqrt{1+\left(\frac{7}{5}\right)^{6}}+2 \sqrt{1+\left(\frac{8}{5}\right)^{6}}+2 \sqrt{1+\left(\frac{9}{5}\right)^{6}}+\sqrt{1+(2)^{6}}]\\ &\approx 3.9577 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.