Answer
$$\int \sin m x \cos n x d x=-\frac{\cos (m-n) x}{2(m-n)}-\frac{\cos (m+n) x}{2(m+n)}+C,\ \ \ \ m\neq n$$
Work Step by Step
Since
$$ \sin m x \cos n x=\frac{1}{2}(\sin (m-n) x+\sin (m+n) x)$$
Then
\begin{align*}
\int \sin m x \cos n x d x&=\frac{1}{2}\int (\sin (m-n) x+\sin (m+n) x) d x\\
&=\frac{1}{2}\left[-\frac{\cos (m-n) x}{(m-n)}-\frac{\cos (m+n) x}{(m+n)}\right]+C
\end{align*}