Answer
$$0$$
Work Step by Step
Given
$$ \int_{0}^{\pi}\sin x\sin 3xdx$$
Use
$$ \sin (a x) \sin (b x)=\frac{1}{2} \cos ((a-b) x)-\frac{1}{2} \cos ((a+b) x) $$
Then
\begin{align*}
\int_{0}^{\pi}\sin x\sin 3xdx&=\frac{1}{2}\int_{0}^{\pi}(\cos 2x -\cos 4x)dx\\
&=\frac{-1}{2}\left(\frac{1}{2}\sin x-\frac{1}{7}\sin4 x\right)\bigg|_{0}^{\pi} \\
&=0
\end{align*}