Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 404: 70

Answer

$$\frac{1}{8}\left(\frac{5x}{2}-2\sin \left(2x\right)+\frac{3}{4}\sin \left(2x\right)\cos \left(2x\right)+\frac{1}{6}\sin ^3\left(2x\right)+C\right)$$

Work Step by Step

\begin{aligned} \int \sin ^{6} x d x &=\int\left(\frac{1}{2}(1-\cos 2 x)\right)^{3} d x \\ &=\frac{1}{8} \int(1-\cos 2 x)^{3} d x \\ &=\frac{1}{8} \int\left(1-3 \cos 2 x+3 \cos ^{2} 2 x-\cos ^{3} 2 x\right) d x\\ &=\frac{1}{8} \int\left(1-3 \cos 2 x+\frac{3}{2}(1+ \cos 4x)-\cos ^{2} 2 x\cos 2 x\right) d x\\ &=\frac{1}{8} \int\left(\frac{5}{2}-3 \cos 2 x+\frac{3}{2}\cos 4x-\cos ^{2} 2 x\cos 2 x\right) d x\\ &=\frac{1}{8}\left(\frac{5x}{2}-2\sin \left(2x\right)+\frac{3}{4}\sin \left(2x\right)\cos \left(2x\right)+\frac{1}{6}\sin ^3\left(2x\right)+C\right) \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.