Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 404: 66

Answer

$$\int \sin^2 xdx =\frac{x}{2}-\frac{1}{4}\sin2x +C$$ $$\int \cos^2 xdx = \frac{x}{2}+\frac{1}{4}\sin 2 x+C$$

Work Step by Step

Let \begin{align*} u&=\sin x\ \ \ \ \ \ \ \ \ \ \ \ dv=\sin x dx\\ du&= \cos x\ \ \ \ \ \ v=-\cos x \end{align*} Then \begin{align*} \int \sin^2 xdx&= -\cos x\sin x+\int \cos^2 xdx \\ &=-\frac{1}{2}\sin2x +\int (1-\sin^2 x)dx\\ 2\int \sin^2 xdx&=-\frac{1}{2}\sin2x +x\\ \int \sin^2 xdx&=\frac{x}{2}-\frac{1}{4}\sin2x +C \end{align*} Let \begin{align*} u&=\cos x\ \ \ \ \ \ \ \ \ \ \ \ dv=\cos x dx\\ du&= -\sin x\ \ \ \ \ \ v=\sin x \end{align*} Then\begin{align*} \int \cos^2 xdx&= \cos x\sin x+\int \sin^2 xdx \\ &=\frac{1}{2}\sin 2 x+\int (1-\cos^2 x)dx\\ 2\int \cos^2 xdx&= \frac{1}{2}\sin 2 x+x\\ \int \cos^2 xdx&= \frac{x}{2}+\frac{1}{4}\sin 2 x+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.