Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - Chapter Review Exercises - Page 387: 74

Answer

$$\frac{1}{e}-\frac{1}{e^3}.$$

Work Step by Step

Let $ u=e^x $, then $ du=e^xdx $, $ x:=0\to \ln 3$, $ u:=1\to 3$. Now, we have $$\int_0^{\ln 3} e^{x-e^x}dx =\int_0^{\ln 3} e^{x}e^{-e^x}dx=\int_1^3 e^{-u}du\\ = -e^{-u}|_1^3=-e^{-3}+e^{-1}=\frac{1}{e}-\frac{1}{e^3}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.