Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - Chapter Review Exercises - Page 386: 56

Answer

$$\frac{e^{x} \sin ^{-1} x}{\ln x}\left( 1+\frac{1}{\sin^{-1}x\sqrt{1-x^2}} -\frac{1 }{x\ln x} \right)$$

Work Step by Step

Given $$y=\frac{e^{x} \sin ^{-1} x}{\ln x}$$ Since \begin{align*} \ln y&=\ln \frac{e^{x} \sin ^{-1} x}{\ln x}\\ &=\ln( e^x\sin^{-1}x )-\ln \ln x\\ &= \ln( e^x)+\ln (\sin^{-1}x )-\ln \ln x \end{align*} Differentiate both sides \begin{align*} \frac{1}{y}y'&= \frac{1}{e^x}e^x+\frac{1}{\sin^{-1}x}\frac{1}{\sqrt{1-x^2}} -\frac{1}{\ln x} \frac{1}{ x}\\ &= 1+\frac{1}{\sin^{-1}x\sqrt{1-x^2}} -\frac{1 }{x\ln x} \\ y'&=\frac{e^{x} \sin ^{-1} x}{\ln x}\left( 1+\frac{1}{\sin^{-1}x\sqrt{1-x^2}} -\frac{1 }{x\ln x} \right) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.