Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - 6.1 Area Between Two Curves - Exercises - Page 287: 46

Answer

$$2-\frac{\pi}{2}$$

Work Step by Step

Given $$x=\sin y, \quad x=\frac{2}{\pi} y$$ Since \begin{aligned} \sin y &=\frac{2}{\pi} y \\ y &=0, \pm \frac{\pi}{2} \end{aligned} and $ \sin y\geq 2y/\pi $ for $0\leq y\leq \pi/2$ Then from symmetry, \begin{aligned} A &=2\int_{0}^{\pi / 2}\left[\sin y-\frac{2}{\pi} y\right] d y \\ &=2\left[-\cos y-\frac{1}{\pi} y^{2}\right]_{0}^{\pi / 2} \\ &=2\left[-\cos \frac{\pi}{2}-\frac{1}{\pi}\left(\frac{\pi}{2}\right)^{2}+\cos 0+0\right] \\ &=2-\frac{\pi}{2} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.