Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - 6.1 Area Between Two Curves - Exercises - Page 287: 23

Answer

$$\frac{1331}{6}$$

Work Step by Step

Given $$x=y^{2}+4 y-22,\ \ \ x=3 y+8 $$ First, we find the intersection points; we get \begin{align*} y^{2}+4 y-22&=3 y+8\\ y^{2}+y-30&=0\\ (y+6)(y-5)&=0 \end{align*} Then $y= -6, \ \ 5$ and $ 3 y+8\geq y^{2}+4 y-22 $ for $-6\leq y\leq 5$; hence, the area is given by \begin{aligned} \text{Area}&=\int_{-6}^{5}\left(3 y+8-\left(y^{2}+4 y-22\right)\right) d y\\ &=\int_{-6}^{5}\left(-y^{2}-y+30\right) d y\\ &= \frac{-y^{3}}{3}-\frac{y^{2}}{2}+30 y\bigg|_{-6}^{5}\\ &=\frac{1331}{6} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.