Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - 6.1 Area Between Two Curves - Exercises - Page 287: 44

Answer

$$\frac{1}{8}$$

Work Step by Step

Given $$y=\sin (2 x), \quad y=\sin (4 x), \quad x=0, \quad x=\frac{\pi}{6}$$ Since \begin{align*} \sin (4 x)&=\sin (2 x)\\ 2\sin ( 2x)\cos(2x)-\sin (2x)&=0\\ \sin(2x)(2\cos (2x)-1)&=0 \end{align*} then $x=0,\ \ x=\pi/6$ and $\sin4x\geq \sin2x $ for $ 0\leq x\leq \pi/6$ Hence, \begin{aligned} A &=\int_{0}^{\pi / 6}(\sin (4 x)-\sin (2 x)) d x \\ &=\left.\left(\frac{-\cos (4 x)}{4}+\frac{\cos (2 x)}{2}\right)\right|_{0} ^{\pi / 6} \\ &=\frac{1}{8} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.