Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - 6.1 Area Between Two Curves - Exercises - Page 287: 43

Answer

$$\frac{3 \sqrt{3}}{4}$$

Work Step by Step

Given $$y=\cos x, \quad y=\cos 2 x, \quad x=0, \quad x=\frac{2 \pi}{3}$$ Since \begin{align*} \cos x&=\cos2x\\ \cos x&=\cos^2x-\sin^2\\ 2\cos^2x-\cos x-1&=0\\ (2 \cos x+1)(\cos x-1)&=0 \end{align*} Then $x=0, \quad x=\frac{2 \pi}{3}$, and $ \cos x\geq\cos 2x$ for $ 0\leq x\leq 2\pi/3$ Hence, \begin{aligned} A &=\int_{0}^{\frac{2 \pi}{3}}(f(x)-g(x)) d x \\ &=\int_{0}^{\frac{2 \pi}{3}}(\cos x-\cos 2 x) d x \\ &=\left[\sin x-\frac{\sin 2 x}{2}\right]_{0}^{\frac{2 \pi}{3}} \\ &=\frac{3 \sqrt{3}}{4} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.