Answer
partition P is
$x_0 = 0$ < $x_1 = 1$ < $x_2 = 2.5$ < $x_3 = 3.2$ < $x_4 = 5$
the set of sample point C is
{$c_1= 0.5$, $c_2 = 2$, $c_3 = 3$, $c_4 = 4.5$}
Riemann sum is $96.85$
Work Step by Step
partition P is
$x_0 = 0$ < $x_1 = 1$ < $x_2 = 2.5$ < $x_3 = 3.2$ < $x_4 = 5$
the set of sample point C is
{$c_1= 0.5$, $c_2 = 2$, $c_3 = 3$, $c_4 = 4.5$}
Riemann sum is
$Δx_1f(c_1)+Δx_2f(c_2)+Δx_3f(c_3)+Δx_4f(c_4)$ = $(1-0)34.25+(2.5-1)20+(3.2-2.5)8+(5-3.2)15$ = $96.85$