Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.7 The Chain Rule - Exercises - Page 147: 96

Answer

(a) $f^{(1)}(x)=\dfrac{d}{dx}(\cot(x^{2})) = -2 x \csc^2(x^2)$ $f^{(2)}(x)=(8x^2cot(x^2)−2)csc^2(x^2)$ $f^{(3)}(x)=(24xcot(x^2)−32x^3cot^2(x^2))csc^2(x^2)−16x^3csc^4(x^2)$ (b) $f^{(1)}(x)=\dfrac{3x^2}{2\sqrt{x^3+1}}$ $f^{(2)}=\dfrac{3x^4+12x}{4(x^3+1)^{\frac{3}{2}}}$ $f^{(3)}(x)=\dfrac{-3x^6-60x^3+24}{8(x^3+1)^{\frac{5}{2}}}$

Work Step by Step

(a) The given function is $f (x) = \cot(x^{2})$ Use computer algebra system to find $f^{(k)}(x)$ for $k=1,2,3$. For $k=1$ $f^{(1)}(x)=\dfrac{d}{dx}(\cot(x^{2})) = -2 x \csc^2(x^2)$ For $k=2$ $f^{(2)}(x)=(8x^2cot(x^2)−2)csc^2(x^2)$ For $k=3$ $f^{(3)}(x)=(24xcot(x^2)−32x^3cot^2(x^2))csc^2(x^2)−16x^3csc^4(x^2)$ (b) The given function is $f (x) = \sqrt{x^3+1}$ Use computer algebra system to find $f^{(k)}(x)$ for $k=1,2,3$. For $k=1$ $f^{(1)}(x)=\dfrac{3x^2}{2\sqrt{x^3+1}}$ For $k=2$ $f^{(2)}=\dfrac{3x^4+12x}{4(x^3+1)^{\frac{3}{2}}}$ For $k=3$ $f^{(3)}(x)=\dfrac{-3x^6-60x^3+24}{8(x^3+1)^{\frac{5}{2}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.