Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.7 The Chain Rule - Exercises - Page 147: 80

Answer

(a) $1.226$ (b) $5.08$

Work Step by Step

Given $$L(t)=32\left(1-\left(1+0.37 t+0.068 t^{2}+0.0085 t^{3}+0.0009 t^{4}\right)^{-1}\right)$$ (a) Since \begin{align*} L'(t) &= 32\left(0-\left(-\frac{0.0036t^3+0.0255t^2+0.136t+0.37}{\left(1+0.37t+0.068t^2+0.0085t^3+0.0009t^4\right)^2}\right)\right)\\ &= \frac{32\left(0.0036t^3+0.0255t^2+0.136t+0.37\right)}{\left(0.0009t^4+0.0085t^3+0.068t^2+0.37t+1\right)^2} \end{align*} Then \begin{align*} L'(6)&=\frac{32\left(0.0036(6)^3+0.0255(6)^2+0.136(6)+0.37\right)}{\left(0.0009(6)^4+0.0085(6)^3+0.068(6)^2+0.37(6)+1\right)^2}\\ &\approx1.226 \end{align*} (b) From the following figure, we can get $$ L'(2.3) \approx 5.08$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.