Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.7 The Chain Rule - Exercises - Page 147: 93

Answer

$$-1.15 \times 10^{-5} \mathrm{kPa} / \mathrm{m}$$

Work Step by Step

Given $$ T=15.04-0.000649 h, \quad P=101.29+\left(\frac{T+273.1}{288.08}\right)^{5.256} $$ Since for $h=3000$, we get $$ T(3000)= 13.093$$ and \begin{align*} \frac{d P}{d h}&=\frac{d P}{d T} \frac{d T}{d h}\\ &= 5.256\left(\frac{T+273.1}{288.08}\right)^{4.256}\left(\frac{1}{288.08}\right) (-0.000649) \end{align*} Then, at $h=3000$ \begin{align*} \frac{d P}{d h}\bigg|_{h=3000} &= 5.256\left(\frac{(13.093)+273.1}{288.08}\right)^{4.256}\left(\frac{1}{288.08}\right) (-0.000649) \\ &\approx -1.15 \times 10^{-5} \mathrm{kPa} / \mathrm{m} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.