Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.5 Evaluating Limits Algebraically - Exercises - Page 73: 59

Answer

$$-1$$ $$\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x(x-1)}\right) \text { does not exist. }$$

Work Step by Step

\begin{align*} \lim _{x \rightarrow 0}\left(\frac{1}{x}+\frac{1}{x(x-1)}\right)&=\lim _{x \rightarrow 0} \frac{(x-1)+1}{x(x-1)}\\ &=\lim _{x \rightarrow 0} \frac{1}{x-1}\\ &=-1 \end{align*} and \begin{aligned} &\text { The limit } \\ & \lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x(x-1)}\right) \\ & \text { does not exist. }\\ &-\text { As } x \rightarrow 0+, \text { we have } \frac{1}{x}-\frac{1}{x(x-1)}=\frac{(x-1)-1}{x(x-1)}=\frac{x-2}{x(x-1)} \rightarrow \infty\\ &-\text { As } x \rightarrow 0-\text {, we have } \frac{1}{x}-\frac{1}{x(x-1)}=\frac{(x-1)-1}{x(x-1)}=\frac{x-2}{x(x-1)} \rightarrow-\infty \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.