Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.5 Evaluating Limits Algebraically - Exercises - Page 73: 52

Answer

$$\lim _{h \rightarrow 0} \frac{\sqrt{a+2 h}-\sqrt{a}}{h} =\frac{1 }{ \sqrt{a}}$$

Work Step by Step

Given $$\lim _{h \rightarrow 0} \frac{\sqrt{a+2 h}-\sqrt{a}}{h} $$ let $$ f(h) = \frac{\sqrt{a+2 h}-\sqrt{a}}{h} $$ Since, we have $$ f(0)=\frac{\sqrt{a}-\sqrt{a}}{0}=\frac{0}{0}$$ So, transform algebraically and cancel \begin{aligned}L&= \lim _{h \rightarrow 0} \frac{\sqrt{a+2 h}-\sqrt{a}}{h} \\ &= \lim _{h \rightarrow 0} \frac{\sqrt{a+2 h}-\sqrt{a}}{h}\times \frac{\sqrt{a+2 h}+\sqrt{a}}{\sqrt{a+2 h}+\sqrt{a}} \\ \\ &=\lim _{h \rightarrow 0} \frac{(\sqrt{a+2 h})^{2}-(\sqrt{a})^{2}}{h(\sqrt{a+2 h}+\sqrt{a})} \\ &=\lim _{h \rightarrow 0} \frac{a+2 h-a}{h(\sqrt{a+2 h}+\sqrt{a})} \\ &=\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{a+2 h}+\sqrt{a})}\\ &=\lim _{h \rightarrow 0} \frac{2 }{ (\sqrt{a+2 h}+\sqrt{a})} \\ &=\frac{2 }{ (\sqrt{a+0}+\sqrt{a})}\\ &=\frac{2 }{ 2\sqrt{a}}\\ &=\frac{1 }{ \sqrt{a}} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.