Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.5 Evaluating Limits Algebraically - Exercises - Page 73: 53

Answer

$$\lim _{x \rightarrow 0} \frac{(x+a)^{3}-a^{3}}{x} =3a^2$$

Work Step by Step

Given $$\lim _{x \rightarrow 0} \frac{(x+a)^{3}-a^{3}}{x}$$ let $$ f(x) = \frac{(x+a)^{3}-a^{3}}{x} $$ Since, we have $$ f(0)= \frac{a^3-a^{3}}{0}=\frac{0}{0}$$ So, transform algebraically and cancel \begin{aligned}L&= \lim _{x \rightarrow 0} \frac{(x+a)^{3}-a^{3}}{x} \\ &= \lim _{x \rightarrow 0} \frac{(x+a-a)((x+a)^2+a(x+a)+a^2)}{x} \\ &= \lim _{x \rightarrow 0} \frac{(x )((x+a)^2+a(x+a)+a^2)}{x} \\ &= \lim _{x \rightarrow 0}( (x+a)^2+a(x+a)+a^2) \\ &=((0+a)^2+a(0+a)+a^2)\\ &=a^2+a^2+a^2\\ &=3a^2 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.