Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.5 Evaluating Limits Algebraically - Exercises - Page 73: 43

Answer

$$ \lim _{h \rightarrow 0} \frac{\sqrt[4]{1+h}-1}{h}=\frac{1}{4}$$

Work Step by Step

Given $$ \lim _{h \rightarrow 0} \frac{\sqrt[4]{1+h}-1}{h}$$ Let $$ f(h) = \frac{\sqrt[4]{1+h}-1}{h}$$ Since, we have $$ f( 0= \frac{1-1}{0}=\frac{0}{0}$$ Let $\sqrt[4]{1+h}=x \ \rightarrow h=x^4-1$ Also, when $ h\rightarrow 0, \ \ \Rightarrow x \rightarrow 1 $, So, transform algebraically and cancel: \begin{aligned} L&= \lim _{h \rightarrow 0} \frac{\sqrt[4]{1+h}-1}{h}\\ & = \lim _{x \rightarrow 1} \frac{x-1}{x^{4}-1}\\ & = \lim _{x \rightarrow 1} \frac{x-1}{(x^{2}-1)(x^2+1)}\\ &=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(x+1)\left(x^{2}+1\right)}\\ &=\lim _{x \rightarrow 1} \frac{1}{(x+1)\left(x^{2}+1\right)}\\ &=\frac{1}{(1+1)\left(1^{2}+1\right)}\\ &=\frac{1}{4} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.