Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 882: 60

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {r^{ - a}}{\rm{d}}A$ converges if and only if $a < 2$.

Work Step by Step

We have the region ${\cal D}$, the unit disk ${x^2} + {y^2} \le 1$. In polar coordinates, ${\cal D}$ is described by ${\cal D} = \left\{ {\left( {r,\theta } \right)|0 \le r \le 1,0 \le \theta \le 2\pi } \right\}$ Evaluate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {r^{ - a}}{\rm{d}}A$ in polar coordinates: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {r^{ - a}}{\rm{d}}A = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^1 \left( {{r^{ - a}}} \right)r{\rm{d}}r{\rm{d}}\theta $ $ = \mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\mathop \smallint \limits_{r = 0}^1 {r^{ - \left( {a - 1} \right)}}{\rm{d}}r} \right){\rm{d}}\theta $ $ = \left( {\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta } \right)\left( {\mathop \smallint \limits_{r = 0}^1 {r^{ - \left( {a - 1} \right)}}{\rm{d}}r} \right)$ $ = 2\pi \mathop \smallint \limits_{r = 0}^1 {r^{ - \left( {a - 1} \right)}}{\rm{d}}r$ Recall that the improper integral $\mathop \smallint \limits_0^1 {x^{ - a}}{\rm{d}}x$ converges if and only if $a < 1$. Therefore, the integral $\mathop \smallint \limits_{r = 0}^1 {r^{ - \left( {a - 1} \right)}}{\rm{d}}r$ converges if and only if $a - 1 < 1$ or $a < 2$. Hence, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {r^{ - a}}{\rm{d}}A$ converges if and only if $a < 2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.