Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 882: 56

Answer

The integral of $f\left( {x,y,z} \right) = {x^2} + {y^2}$ over ${\cal W}$ in both spherical and cylindrical coordinates yield: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {x^2} + {y^2}{\rm{d}}V = \frac{{8\sqrt 2 \pi }}{5}$

Work Step by Step

We have $f\left( {x,y,z} \right) = {x^2} + {y^2}$ over ${\cal W}$, the region within the cylinder ${x^2} + {y^2} = 2$ between $z=0$ and the cone $z = \sqrt {{x^2} + {y^2}} $. Case 1. Spherical coordinates In spherical coordinates: $f\left( {\rho \sin \varphi \cos \theta ,\rho \sin \varphi \sin \theta ,\rho \cos \varphi } \right) = {\rho ^2}{\sin ^2}\varphi $ The cone $z = \sqrt {{x^2} + {y^2}} $ in spherical coordinates is expressed by $z = \rho \cos \varphi = \sqrt {{\rho ^2}{{\sin }^2}\varphi } $ $\cos \varphi = \sin \varphi $ $\tan \varphi = 1$, ${\ \ \ \ }$ $\varphi = \frac{\pi }{4}$ From the figure attached, we see that each ray starts from the cone $\varphi = \frac{\pi }{4}$ and ends at $\varphi = \frac{\pi }{2}$. Therefore, the ranges of $\varphi $ is $\frac{\pi }{4} \le \varphi \le \frac{\pi }{2}$. Since $\rho$ starts from $0$ and intersects the cylinder, we need to express the cylinder ${x^2} + {y^2} = 2$ in spherical coordinates: ${\rho ^2}{\sin ^2}\varphi = 2$ $\rho \sin \varphi = \sqrt 2 $ $\rho = \frac{{\sqrt 2 }}{{\sin \varphi }}$ So, the range of $\rho$ is $0 \le \rho \le \frac{{\sqrt 2 }}{{\sin \varphi }}$. Thus, the description of ${\cal W}$ in spherical coordinates: ${\cal W} = \left\{ {\left( {\rho ,\varphi ,\theta } \right)|0 \le \rho \le \frac{{\sqrt 2 }}{{\sin \varphi }},\frac{\pi }{4} \le \varphi \le \frac{\pi }{2},0 \le \theta \le 2\pi } \right\}$ Using Eq. (8) of Theorem 3, we evaluate the integral of $f\left( {x,y,z} \right)$ over ${\cal W}$ in spherical coordinates: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {x^2} + {y^2}{\rm{d}}V = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = \pi /4}^{\pi /2} \mathop \smallint \limits_{\rho = 0}^{\sqrt 2 /\sin \varphi } {\rho ^4}{\sin ^3}\varphi {\rm{d}}\rho {\rm{d}}\varphi {\rm{d}}\theta $ $ = \frac{1}{5}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = \pi /4}^{\pi /2} \left( {{\rho ^5}|_0^{\sqrt 2 /\sin \varphi }} \right){\sin ^3}\varphi {\rm{d}}\varphi {\rm{d}}\theta $ $ = \frac{1}{5}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = \pi /4}^{\pi /2} \left( {\frac{{4\sqrt 2 }}{{{{\sin }^5}\varphi }}} \right){\sin ^3}\varphi {\rm{d}}\varphi {\rm{d}}\theta $ $ = \frac{{4\sqrt 2 }}{5}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = \pi /4}^{\pi /2} {\csc ^2}\varphi {\rm{d}}\varphi {\rm{d}}\theta $ Recall from Eq. (16) of the Table of Trigonometric Integrals (Section 8.2): $\smallint {\csc ^2}x{\rm{d}}x = - \cot x$ Therefore, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {x^2} + {y^2}{\rm{d}}V = \frac{{4\sqrt 2 }}{5}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = \pi /4}^{\pi /2} {\csc ^2}\varphi {\rm{d}}\varphi {\rm{d}}\theta $ $ = - \frac{{4\sqrt 2 }}{5}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\cot \varphi |_{\pi /4}^{\pi /2}} \right){\rm{d}}\theta $ $ = - \frac{{4\sqrt 2 }}{5}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {0 - 1} \right){\rm{d}}\theta $ $ = \frac{{4\sqrt 2 }}{5}\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta = \frac{{8\sqrt 2 \pi }}{5}$ Thus, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {x^2} + {y^2}{\rm{d}}V = \frac{{8\sqrt 2 \pi }}{5}$. Case 2. Cylindrical coordinates In cylindrical coordinates: $f\left( {r\cos \theta ,r\sin \theta ,z} \right) = {r^2}$ The cone $z = \sqrt {{x^2} + {y^2}} $ in cylindrical coordinates is $z=r$. So, $z$ varies from $z=0$ to $z=r$. The projection of ${\cal W}$ onto the $xy$-plane is ${\cal D}$, a disk of radius $\sqrt 2 $, that is, ${x^2} + {y^2} \le 2$. So, ${\cal D}$ is described by ${\cal D} = \left\{ {\left( {r,\theta } \right)|0 \le r \le \sqrt 2 ,0 \le \theta \le 2\pi } \right\}$ Thus, the description of ${\cal W}$ in cylindrical coordinates: ${\cal W} = \left\{ {\left( {r,\theta ,z} \right)|0 \le r \le \sqrt 2 ,0 \le \theta \le 2\pi ,0 \le z \le r} \right\}$ Using Eq. (5) of Theorem 2, we evaluate the integral of $f\left( {x,y,z} \right)$ over ${\cal W}$ in cylindrical coordinates: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {x^2} + {y^2}{\rm{d}}V = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^{\sqrt 2 } \mathop \smallint \limits_{z = 0}^r {r^3}{\rm{d}}z{\rm{d}}r{\rm{d}}\theta $ $ = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^{\sqrt 2 } {r^3}\left( {z|_0^r} \right){\rm{d}}r{\rm{d}}\theta $ $ = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^{\sqrt 2 } {r^4}{\rm{d}}r{\rm{d}}\theta $ $ = \frac{1}{5}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {{r^5}|_0^{\sqrt 2 }} \right){\rm{d}}\theta $ $ = \frac{{4\sqrt 2 }}{5}\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta = \frac{{8\sqrt 2 \pi }}{5}$ Thus, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {x^2} + {y^2}{\rm{d}}V = \frac{{8\sqrt 2 \pi }}{5}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.