Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 882: 52

Answer

The volume of the region is $V = \frac{{2\pi {R^3}}}{3}\left( {1 - \cos {\varphi _0}} \right)$.

Work Step by Step

We have region ${\cal W}$, lying above the cone $\varphi = {\varphi _0}$ and below the sphere $\rho = R$. Since ${\cal W}$ is bounded above by $\rho = R$, the range of $\rho$ is $0 \le \rho \le R$. The cone $\varphi = {\varphi _0}$ implies that ${\cal W}$ is bounded by the angle ${\varphi _0}$ with respect to the $z$-axis. Therefore, $\varphi $ varies from $0$ to ${\varphi _0}$, that is, $0 \le \varphi \le {\varphi _0}$. Thus, the description of ${\cal W}$ in spherical coordinates: ${\cal W} = \left\{ {\left( {\rho ,\varphi ,\theta } \right)|0 \le \rho \le R,0 \le \varphi \le {\varphi _0},0 \le \theta \le 2\pi } \right\}$ Using Eq. (8), the volume of ${\cal W}$ in spherical coordinates: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} 1{\rm{d}}V = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = 0}^{{\varphi _0}} \mathop \smallint \limits_{\rho = 0}^R {\rho ^2}\sin \varphi {\rm{d}}\rho {\rm{d}}\varphi {\rm{d}}\theta $ $ = \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = 0}^{{\varphi _0}} \left( {{\rho ^3}|_0^R} \right)\sin \varphi {\rm{d}}\varphi {\rm{d}}\theta $ $ = \frac{{{R^3}}}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = 0}^{{\varphi _0}} \sin \varphi {\rm{d}}\varphi {\rm{d}}\theta $ $ = - \frac{{{R^3}}}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\cos \varphi |_0^{{\varphi _0}}} \right){\rm{d}}\theta $ $ = - \frac{{{R^3}}}{3}\left( {\cos {\varphi _0} - 1} \right)\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta $ $ = \frac{{2\pi {R^3}}}{3}\left( {1 - \cos {\varphi _0}} \right)$ Thus, the volume of the region is $V = \frac{{2\pi {R^3}}}{3}\left( {1 - \cos {\varphi _0}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.