Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 882: 59

Answer

We prove: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \ln r{\rm{d}}A = - \frac{\pi }{2}$

Work Step by Step

We have the region ${\cal D}$, the unit disk ${x^2} + {y^2} \le 1$. We have ${\cal D}$ in polar coordinates: ${\cal D} = \left\{ {\left( {r,\theta } \right)|0 \le r \le 1,0 \le \theta \le 2\pi } \right\}$ Since $\ln r$ is not defined at $\left( {0,0} \right)$, we define ${{\cal D}_1}$ by ${{\cal D}_1} = \left\{ {\left( {r,\theta } \right)|a \le r \le 1,0 \le \theta \le 2\pi } \right\}$, where $0 < a < 1$, and let $a \to 0$. Evaluate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_1}}^{} \ln r{\rm{d}}A$ in polar coordinates: (1) ${\ \ \ \ }$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_1}}^{} \ln r{\rm{d}}A = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = a}^1 r\ln r{\rm{d}}r{\rm{d}}\theta $ Consider the inner integral: $\mathop \smallint \limits_{r = a}^1 r\ln r{\rm{d}}r$. Write $u = \ln r$ and $dv = rdr$. So, $du = \frac{1}{r}dr$ and $v = \frac{1}{2}{r^2}$. Using Integration by Parts Formula (Section 8.1), $\smallint u{\rm{d}}v = uv - \smallint v{\rm{d}}u$ yields $\mathop \smallint \limits_{r = a}^1 r\ln r{\rm{d}}r = \left( {\frac{1}{2}{r^2}\ln r} \right)|_a^1 - \frac{1}{2}\mathop \smallint \limits_{r = a}^1 r{\rm{d}}r$ $\mathop \smallint \limits_{r = a}^1 r\ln r{\rm{d}}r = - \frac{1}{2}{a^2}\ln a - \frac{1}{4}\left( {{r^2}|_a^1} \right)$ $\mathop \smallint \limits_{r = a}^1 r\ln r{\rm{d}}r = - \frac{1}{2}{a^2}\ln a - \frac{1}{4}\left( {1 - {a^2}} \right)$ Substituting this result back to (1) gives $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_1}}^{} \ln r{\rm{d}}A = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = a}^1 r\ln r{\rm{d}}r{\rm{d}}\theta $ $ = \left( { - \frac{1}{2}{a^2}\ln a - \frac{1}{4}\left( {1 - {a^2}} \right)} \right)\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta $ $ = \left( { - \frac{1}{2}{a^2}\ln a - \frac{1}{4}\left( {1 - {a^2}} \right)} \right)2\pi $ Thus, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_1}}^{} \ln r{\rm{d}}A = \left( { - \frac{1}{2}{a^2}\ln a - \frac{1}{4}\left( {1 - {a^2}} \right)} \right)2\pi $. Now, we take the limit such that $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \ln r{\rm{d}}A = \mathop {\lim }\limits_{a \to 0} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_1}}^{} \ln r{\rm{d}}A = \mathop {\lim }\limits_{a \to 0} \left( { - \frac{1}{2}{a^2}\ln a - \frac{1}{4}\left( {1 - {a^2}} \right)} \right)2\pi $ $ = - \pi \mathop {\lim }\limits_{a \to 0} {a^2}\ln a - \frac{\pi }{2}\mathop {\lim }\limits_{a \to 0} \left( {1 - {a^2}} \right)$ $ = - \pi \mathop {\lim }\limits_{a \to 0} \frac{{\ln a}}{{{a^{ - 2}}}} - \frac{\pi }{2}\mathop {\lim }\limits_{a \to 0} \left( {1 - {a^2}} \right)$ Using L'Hôpital's Rule: $ = - \pi \mathop {\lim }\limits_{a \to 0} \frac{{1/a}}{{ - 2{a^{ - 3}}}} - \frac{\pi }{2}\mathop {\lim }\limits_{a \to 0} \left( {1 - {a^2}} \right)$ $ = \pi \mathop {\lim }\limits_{a \to 0} \frac{{{a^2}}}{2} - \frac{\pi }{2}\mathop {\lim }\limits_{a \to 0} \left( {1 - {a^2}} \right)$ $ = - \frac{\pi }{2}$ Hence, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \ln r{\rm{d}}A = - \frac{\pi }{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.