Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 803: 75

Answer

$y = g\left( x \right) = \sqrt {1 + \ln \left( {{{\sec }^2}x} \right)} $ Please see the figure attached.

Work Step by Step

We are given $f\left( {x,y} \right) = y\sin x$. The gradient is $\nabla f = \left( {y\cos x,\sin x} \right)$ Let the curve $y = g\left( x \right)$ pass through $\left( {0,1} \right)$ that crosses each level curve of $f\left( {x,y} \right) = y\sin x$ at a right angle. Since the gradient $\nabla f$ is normal to the level curves, the path parametrized by the form ${\bf{r}}\left( t \right) = \left( {t,g\left( t \right)} \right)$ passing through $\left( {0,1} \right)$ follow the gradient of $f\left( {x,y} \right) = y\sin x$. Then, the tangent vector ${\bf{r}}'\left( t \right)$ points in the direction of $\nabla f$ for all $t$. That is, ${\bf{r}}'\left( t \right) = k\left( t \right)\nabla {f_{{\bf{r}}\left( t \right)}}$ for some positive scalar function $k\left( t \right)$. So, the equation ${\bf{r}}'\left( t \right) = k\left( t \right)\nabla {f_{{\bf{r}}\left( t \right)}}$ becomes $\left( {1,g'\left( t \right)} \right) = k\left( t \right)\left( {g\left( t \right)\cos t,\sin t} \right)$ In component forms, we get $1 = k\left( t \right)g\left( t \right)\cos t$, $g'\left( t \right) = k\left( t \right)\sin \left( t \right)$ From the first equation we obtain $k\left( t \right) = \frac{1}{{g\left( t \right)\cos t}}$. Substituting it in the second equation above gives $g'\left( t \right) = \frac{{\tan t}}{{g\left( t \right)}}$ Since $g'\left( t \right) = \frac{{dg}}{{dt}}$, so $gdg = \tan tdt$ Integrating both sides gives $\smallint g{\rm{d}}g = \smallint \tan t{\rm{d}}t$ Recall from Example 6 of Section 8.2: $\smallint \tan t{\rm{d}}t = \ln \left| {\sec t} \right| + constant$ So, $\frac{1}{2}{g^2} = \ln \left| {\sec t} \right| + \ln c$, where $c$ is integration constant. ${g^2} = \ln \left( {{c^2}{{\sec }^2}t} \right)$ Thus, the solution is $g\left( t \right) = \pm \sqrt {\ln \left( {{c_1}{{\sec }^2}t} \right)} $, where ${c_1} = {c^2}$ is a constant to be determined. Since the path ${\bf{r}}\left( t \right) = \left( {t,g\left( t \right)} \right)$ passes through $\left( {0,1} \right)$ at $t=0$, we choose the positive solution $g\left( t \right) = \sqrt {\ln \left( {{c_1}{{\sec }^2}t} \right)} $ and get ${\bf{r}}\left( 0 \right) = \left( {0,\sqrt {\ln {c_1}} } \right)) = \left( {0,1} \right)$ So, ${c_1} = {\rm{e}}$. Thus, the path is ${\bf{r}}\left( t \right) = \left( {t,\sqrt {\ln \left( {{\rm{e}}{{\sec }^2}t} \right)} } \right)$ ${\bf{r}}\left( t \right) = \left( {t,\sqrt {\ln \left( {{\rm{e}}{{\sec }^2}t} \right)} } \right)$ Since $\ln {\rm{e}} = 1$, thus ${\bf{r}}\left( t \right) = \left( {t,\sqrt {1 + \ln \left( {{{\sec }^2}t} \right)} } \right)$ Hence, we obtain: $y = g\left( x \right) = \sqrt {1 + \ln \left( {{{\sec }^2}x} \right)} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.