Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 803: 70

Answer

(a) Using the limit definition of directional derivative we show that: ${D_{\bf{v}}}f\left( {0,0} \right)$ exists for all vectors ${\bf{v}}$. Using the limit definition we show that: ${f_x}\left( {0,0} \right) = {f_y}\left( {0,0} \right) = 0$ (b) We show that $f$ does not satisfy Eq. (8). Hence, $f$ is not differentiable at $\left( {0,0} \right)$.

Work Step by Step

(a) We have the definition: $f\left( {x,y} \right) = \frac{{{x^2}y}}{{{x^2} + {y^2}}}$ ${\ \ }$ for $\left( {x,y} \right) \ne \left( {0,0} \right)$ and $f\left( {0,0} \right) = 0$. Let ${\bf{v}} = \left( {h,k} \right)$. 1. Using the limit definition of directional derivative, we evaluate ${D_{\bf{v}}}f\left( {0,0} \right) = \mathop {\lim }\limits_{t \to 0} \frac{{f\left( {th,tk} \right) - f\left( {0,0} \right)}}{t}$ ${D_{\bf{v}}}f\left( {0,0} \right) = \mathop {\lim }\limits_{t \to 0} \frac{{{t^3}{h^2}k/\left( {{t^2}{h^2} + {t^2}{k^2}} \right)}}{t}$ $ = \mathop {\lim }\limits_{t \to 0} \frac{{{h^2}k}}{{{h^2} + {k^2}}} = \frac{{{h^2}k}}{{{h^2} + {k^2}}}$ Thus, ${D_{\bf{v}}}f\left( {0,0} \right)$ exists for all vectors ${\bf{v}}$. 2. Evaluate ${f_x}\left( {0,0} \right)$ using the limit definition: ${f_x}\left( {0,0} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {h,0} \right) - f\left( {0,0} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{0}{h} = 0$ Evaluate ${f_y}\left( {0,0} \right)$ using the limit definition: ${f_y}\left( {0,0} \right) = \mathop {\lim }\limits_{k \to 0} \frac{{f\left( {0,k} \right) - f\left( {0,0} \right)}}{k} = \mathop {\lim }\limits_{k \to 0} \frac{0}{k} = 0$ Hence, ${f_x}\left( {0,0} \right) = {f_y}\left( {0,0} \right) = 0$. (b) Recall from Exercise 69: if $f\left( {x,y} \right)$ is differentiable at $\left( {0,0} \right)$ and $f\left( {0,0} \right) = {f_x}\left( {0,0} \right) = {f_y}\left( {0,0} \right) = 0$, then Eq. (8) holds: (8) ${\ \ \ }$ $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{f\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }} = 0$ Using this result, we check the differentiability of $f$ at $\left( {0,0} \right)$ by evaluating the limit: $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{f\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }} = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^2}y}}{{{{\left( {{x^2} + {y^2}} \right)}^{3/2}}}}.$ Let us choose the case when we approach $\left( {0,0} \right)$ along the line $y=x$. So, substituting it in the limit gives $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{f\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }} = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^2}y}}{{{{\left( {{x^2} + {y^2}} \right)}^{3/2}}}}$ $ = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^3}}}{{{{\left( {2{x^2}} \right)}^{3/2}}}}$ $ = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{1}{{{{\left( 2 \right)}^{3/2}}}} = \frac{1}{{2\sqrt 2 }}$ But the limit is not zero. Therefore, $f$ does not satisfy Eq. (8). Hence, $f$ is not differentiable at $\left( {0,0} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.